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A B S T R A C T   

Considering the risk of explosion, studying the dynamic structural behavior of reinforced concrete (RC) slabs 
subjected to blast loads is crucial for enhancing their resistance. Conventional approaches, including costly 
experimental tests, highly hypothetical analytical methods, and time-consuming numerical simulations, have 
their limitations. This study presents two deep learning-based models for rapid and accurate prediction of 
explosion-induced responses in RC slabs. Available literature data and supplemented numerical simulation data 
are used for training and testing. First, a multi-layer perceptron (MLP) model is established to predict the 
maximum displacement of RC slabs subjected to explosions. The input features include 10 parameters. The 
training results show that the MLP model exhibits good prediction performance. Second, a one-dimensional 
convolutional neural network (1D-CNN) model is constructed to predict the failure modes of RC slabs under 
explosive loads. The input features of the model are consistent with those of the MLP model. The 1D-CNN model 
outperforms the other five conventional machine learning models in classification. Furthermore, a permutation 
feature importance analysis is conducted to determine the effects of the 10 input features on the predicted 
outcomes. This analysis makes the predictions interpretable, thereby bolstering the credibility of the models. 
Results show that the proposed deep learning models offer an efficient and reliable method to predict the 
structural response of RC slabs under explosion loads.   

1. Introduction 

Explosive events, whether resulting from terrorist attacks or acci
dental occurrences, can lead to varying degrees of destruction and pose a 
threat to structural safety, resulting in potential casualties and severe 
loss of property [1]. Reinforced concrete (RC) slabs are one of the 
essential structural components of building structures [2]. When sub
jected to blast loads, RC slabs are prone to damage, resulting in stiffness 
degradation and intensified response, thereby exacerbating the severity 
of disasters. Therefore, developing a method is necessary to predict the 
structural behavior of RC slabs under explosions efficiently and accu
rately. In turn, it will help develop blast-resistant design strategies to 
reduce casualties and mitigate economic losses. 

Experimental tests, analytical methods, and numerical simulations 
are typical methods used to analyze the explosion behavior of RC slabs. 
Conducting large-scale on-site explosion tests to study the structural 
responses of RC components is impractical due to high cost and 
complexity. Consequently, theoretical analysis and numerical 

simulations have become popular approaches. 
Normally, theoretical analysis relies on the assumption of single- 

degree-of-freedom (SDOF) systems. SDOF systems are commonly 
employed to assess the flexural failure of components. For instance, Li & 
Meng [3] obtained normalized pressure impulse (P-I) curves based on 
the SDOF assumption using a maximum displacement-based damage 
criterion. However, real structures may exhibit other failure modes, 
thereby necessitating improved methods. Wang et al. [4] developed a 
simplified approach to derive the P-I curve of RC slabs under blast loads, 
considering different failure modes and degrees. Ma et al. [5] presented 
a method for determining the P-I curve of RC beams, considering 
bending and shear failure. Multi-degree-of-freedom (MDOF) systems 
have also been utilized. El-Dakhakhni et al. [6] used the MDOF frame
work to predict the failure modes of RC components subjected to 
explosive loads. Although this theoretical analysis method exhibits 
computational efficiency, its application is limited by excessive as
sumptions that complicate its usability in complex situations. 

Numerical simulation, which mainly adopts the finite element (FE) 
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method, is another widely used approach for analyzing the structural 
behavior of RC slabs under explosive loads. Some studies focused on 
investigating the structural behavior of RC slabs. For example, Syed 
et al. [7] examined the damage and failure modes of RC slabs under 
near-field and far-field explosions. Zhou et al. [8] employed a concrete 
dynamic plasticity failure material model to explore the dynamic 
response of RC slabs. Moreover, some studies examine the effects of 
various factors on the structural response. Senthil et al. [9] analyzed the 
effects of TNT weight, standoff distance, and boundary conditions on the 
damage mechanisms. Jia et al. [10] investigated the effect of explosive 
weight and position on the damage modes of two-way RC slabs. 

Despite the effectiveness of the numerical simulation, it requires 
expertise in configuring material models, mesh sizes, boundary condi
tions, and other parameters. Furthermore, analyzing the dynamic 
response of refined models is extremely time-consuming. Therefore, 
efficient methods have been developed. For example, based on numer
ical results, Zhao et al. [11] developed formulas to assess the maximum 
displacement of RC slabs under blast loads. Li et al. [12] adopted for
mulas to determine the P-I curve of RC slabs. However, the empirical 
equations are only applicable to specific RC slabs. The dynamic response 
of RC slabs subjected to explosive loads is influenced by various factors, 
thereby presenting challenges in establishing accurate and universal 
empirical formulas. Therefore, the utilization of machine learning (ML) 
with robust data processing capabilities is proposed to address this issue. 

ML techniques have been proven efficient and effective in addressing 
challenges in civil engineering. For instance, Lai et al. [13] and 
Jueyendah et al. [14] developed predictive models to estimate the 
maximum displacement of RC beams under impact loads and predict the 
mechanical properties of cement mortar, respectively. Naderpour et al. 
[15] developed a model to predict the seismic failure modes of RC col
umns. Li et al. [16] attempted to predict the structural behavior under 
dynamic loads using graph neural networks. Several studies have also 
been conducted to assess the blast-induced damage of slabs. Almustafa & 
Nehdi [17,18] satisfactorily evaluated the maximum displacement of RC 
slabs and fiber-reinforced polymer-reinforced slabs under blast loads 
using the random forest (RF) and Gaussian process regression (GPR) 
algorithms. Zhao et al. [19] developed support vector machine (SVM), 
GPR, RF, and back propagation neural network algorithms to assess the 
maximum displacement of RC slabs. However, focusing solely on the 
maximum displacement of slabs under explosive loads is insufficient. 
Examining the failure modes of slabs subjected to explosions is equally 
important for a better understanding of the structural behavior. 

Deep learning (DL), a vital branch of ML, has gained widespread 
popularity because of its strong feature extraction capabilities and 
excellent prediction performance. The application of DL techniques has 
demonstrated exceptional performance across various fields, including 
damage detection [20], time-domain data processing [21], construction 
classification [22], concrete strength prediction [23], image analysis of 
concrete pore structure [24], and identification of earthquakes and ex
plosions [25]. However, very limited DL studies have been conducted on 
the dynamic response of RC structures under explosive loads. One crit
ical challenge is the insufficient quantity of real test data for training. To 
the best knowledge of the authors, only our previous study [26] estab
lished two DL models to predict the responses of RC columns subjected 
to blast loads. No study on the responses of RC slabs is based on DL 
techniques under blast loads. 

In this study, two DL models are developed to enable the rapid and 
precise prediction of the response of RC slabs under blast loads. The first 
model is the multi-layer perceptron (MLP) neural network. It is used to 
predict the maximum displacement of RC slabs under explosions. The 
input features include eight structural parameters and two explosion 
load parameters. The second model is the one-dimensional convolu
tional neural network (1D-CNN). It is used to predict the failure modes 
of RC slabs subjected to explosions. The proposed models are compared 
with five traditional ML models. 

2. Database of RC slabs 

2.1. Literature data 

ML requires a considerable number of reliable data for training. 
However, the available test data are limited due to the high cost and 
spatial constraints of experiments. In this study, 77 data samples, 
including 16 data samples from field blast tests [27,30] and 61 data 
samples from numerical simulations [7,10,11,27,31,32] are collected. 
The data sources are presented in Table 1. The experimental data only 
consisted of one-way slabs with maximum displacements between 1.5 
mm and 50 mm. Yao et al. [27] and Wang et al. [28,29] focused on the 
response of RC slabs subjected to close-in explosive loadings, whereas 
Wu et al. [30] studied the response under far-field blast loadings. The 
collected numerical simulation data included 30 samples of one-way 
slabs and 31 samples of two-way slabs, with maximum displacements 
ranging from 0.7 mm to 239 mm. Yao et al. [27] and Zhao et al. [11] 
analyzed the structural responses of RC slabs subjected to close-range 
explosions, contributing 16 data samples. Du & Li [31], Syed et al. 
[7], Jia et al. [10], and Abdel-Mooty et al. [32] focused on the structural 
behavior of slabs subjected to far-field explosions, resulting in 45 data 
samples. The detailed parameter ranges of the collected data are pre
sented in Table 2. 

2.2. Numerical simulation data 

Due to the limited availability of literature data, the training dataset 
needs to be expanded. In this study, the structural behavior of RC slabs 
under various explosive conditions is simulated using the LS-DYNA 
software. The numerical models are validated, thereby expanding the 
training dataset. 

2.2.1. Calibration of the FE model 
Two different case studies are conducted to demonstrate the reli

ability of the numerical simulation. Case I uses experimental data from 
Wang et al. [28] to validate the accuracy of the constructed FE model in 
simulating the damage degree and maximum displacement of RC slabs 
under explosive loads. A comparison of displacement–time history be
tween the experiment and the numerical simulation is unavailable 
because of the absence of displacement curve measurement in Case I. 
Therefore, in Case II, the experimental study by Su et al. [33] is used to 
validate the effectiveness of numerical simulation.  

(1) Case I. 

The dimensions of the RC slab [28] were 1100 mm × 1000 mm ×
40 mm. The steel bars were arranged in a single layer along both di
rections with a spacing of 75 mm, a diameter of 6 mm, and a yield 
strength of 600 MPa. The compressive and tensile strengths of the 
concrete were 39.5 MPa and 4.2 MPa, respectively. The blast charge was 
placed in the center of the slab at a height of 0.4 m. The experimental 
setup is depicted in Fig. 1 [28]. 

Table 1 
Sources of literature data.  

Author Year Type Number 

Yao et al. [27]  2016 Experimental study  6 
Wang et al. [28]  2013 Experimental study  4 
Wang et al. [29]  2012 Experimental study  2 
Wu et al. [30]  2009 Experimental study  4 
Du & Li [31]  2009 Numerical simulation  9 
Syed et al. [7]  2018 Numerical simulation  14 
Yao et al. [27]  2016 Numerical simulation  7 
Jia et al. [10]  2014 Numerical simulation  6 
Abdel-Mooty et al.[32]  2014 Numerical simulation  16 
Zhao et al. [11]  2019 Numerical simulation  9  
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As shown in Fig. 2, a three-dimensional 1/4 of the slab is modelled to 
optimize computational efficiency for the numerical simulation. The 
rebar and concrete are modelled separately using a grid size of 3 mm, 
resulting in 399,464 concrete elements and 5248 reinforcement 

elements. A mesh size sensitivity analysis has been studied. The element 
size used here is selected by trading off the accuracy and efficiency. The 
K&C model [34] is adopted to model the concrete, incorporating the 
dynamic increase factor (DIF) of compressive strength proposed by CEB 
[35], whereas the DIF of tensile strength was adopted from the formu
lation presented by Malvar & Crawford [36]. The PLASTIC_KINEMATIC 
model [37] is adopted for the reinforcement, in which the DIF follows 
the formulation presented by Malvar & Crawford [38]. The boundary 
conditions of the slab are simulated by establishing rigid bodies and 
employing the automatic surface-to-surface contact method. The 
LOAD_BLAST method is used to apply the explosion. Tables 3 and 4 
show the primary material parameters of the concrete and rebar, 
respectively. 

The conditions on the rear surface of the slab after the detonation are 
shown in Fig. 3. Along with the emergence of radial cracks, localized 
concrete spalling is observed in the central region. The experiment re
sults indicate that the radius of concrete spalling on the rear surface is 
approximately 120 mm, accompanied by a maximum displacement of 
35 mm. Numerical simulations show similar damage conditions, 
revealing a rear surface spalling radius of 110 mm and a maximum 
displacement of 33.6 mm. These results exhibit deviations of 8% and 
4.5% from the experimental values, respectively, which are well within 
an acceptable range. Additionally, numerical simulations are conducted 
for explosion cases of (0.2 kg, 0.4 m) and (0.31 kg, 0.4 m), and the re
sults are presented in Table 5. The numerical results agree well with the 
experimental results. The aforementioned comparison demonstrates 
that the constructed numerical model can accurately simulate the 
damage extent and maximum displacement of RC slabs exposed to 
explosions.  

(2) Case II. 

To further validate the accuracy of the numerical simulation, an RC 
one-way slab labeled NSC-2 by Su et al. [33] is investigated. The di
mensions of the slab were 2400 mm × 1000 mm × 100 mm. The steel 
bars were double-layered and arranged bidirectionally, with a diameter 
of 10 mm and a yield strength of 480 MPa. The spacing between the bars 
was 200 mm along the length side and 100 mm along the width side. 

Table 2 
Range of literature data.  

Feature Unit Symbol Range 

Experiment Simulation 

Length m L 0.85 ~ 2 0.85 ~ 3 
Width m W 0.75 ~ 1.25 0.75 ~ 3 
Thickness m T 0.03 ~ 0.1 0.03 ~ 0.16 
Concrete compressive 

strength 
MPa fc 39.5 ~ 40 13.7 ~ 140 

Rebar yield strength MPa fy 395 ~ 600 300 ~ 630 
Rebar diameter mm D 6 ~ 12 5 ~ 12 
Rebar spacing mm R 50 ~ 750 30 ~ 250 
Charge mass kg M 0.13 ~ 8.2 0.13 ~ 1000 
Blast distance m d 0.3 ~ 3 0.3 ~ 15 
Type of slab / F One-way One-way, Two- 

way  

Fig. 1. Experimental setup [28].  

Fig. 2. FE model of Case I.  

Table 3 
Material parameters of concrete.  

Density (kg/ 
m3) 

Poisson 
ratio 

Compressive strength 
(MPa) 

b1 b2 b3  

2500  0.2  39.5  0.8  6.35  0.3 

Note: b1, b2, and b3 are damage parameters. 
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The concrete compressive strength was 30.4 MPa. The blast charge, with 
a mass of 4 kg, was positioned at a height of 1.27 m from the center of 
the slab. The fixed constraints were located on both sides of the length 
edge of the slab. More detailed information can be found in Reference 
[33]. 

The FE model is established and illustrated in Fig. 4. Due to structural 
symmetry, a three-dimensional 1/4 model is adopted to reduce the 
computational time. The mesh size for concrete and steel bars is set to 
10 mm, resulting in 60,000 concrete elements and 2140 steel elements. 

The material models employed in this case are identical to those in Case 
I. At the edge of the slab, cylindrical rigid bodies are created, and the 
CONTACT_NODES_TO_SURFACE algorithm is utilized to simulate the 
contact interface between the RC slab and the supports. Static and dy
namic friction are defined as 0.3 and 0.2, respectively. Concrete damage 
parameters b1, b2, and b3 are used from Reference [33]. 

The experimental and FE simulation results of the deflection curve at 
the center of the slab are compared in Fig. 5. The numerical simulation 
results agree well with the experimental results. The maximum 
displacement measured in the experiment was 43.28 mm, and the re
sidual deflection was 15.51 mm. The numerical simulation provides a 
maximum displacement of 39.4 mm and a residual deflection of 
16.47 mm, resulting in a difference of 9% and 6%, respectively. Overall, 
the experimental and numerical simulation results show a considerable 
degree of consistency, indicating that the developed FE model can 
simulate the structural behavior of the slab exposed to blast effectively. 

The reliability of the numerical model is verified based on the 

Table 4 
Material parameters of rebar.  

Density (kg/ 
m3) 

Poisson 
ratio 

Young’s modulus 
(GPa) 

Yield strength 
(MPa) 

C P  

7830  0.3  200  600  40  5 

Note: C and P are strain rate parameters. 

Fig. 3. Rear surface damage after explosion: numerical simulation vs. experiment.  

Table 5 
Slab maximum displacement: numerical simulation vs. experiment.  

Dimension 
of the slab 
(mm) 

Charge mass 
(kg) 

Blast distance 
(m) 

Scale 
distance (m/kg1/3) 

Maximum displacement (mm) Deviation 

Experiment Numerical simulation 

1100 × 1000 × 40  0.2  0.4  0.68  10.1  9.1  9.9%  
0.31  0.4  0.59  14.8  15.9  7.4%  

Fig. 4. FE model of Case II.  
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aforementioned analysis. The dynamic response of different types of RC 
slabs under varying explosive loading cases will be simulated using the 
validated numerical model, thereby expanding the training dataset. 

2.2.2. Supplementation of numerical simulation data 
This section mainly concentrates on exploring the structural re

sponses of RC slabs subjected to detonations caused by suitcase bombs 
and small vehicle bombs. The parameters of the explosion load are 
determined based on Reference [39], whereas the structural parameters 
of the RC slabs are determined in accordance with the Chinese design 
code [40]. A total of 495 data samples, including 270 single-way slabs 
and 225 two-way slabs, are supplemented. The dataset for one-way slabs 
contains a range of maximum displacements ranging from 3.8 mm to 
1146 mm, whereas the dataset for two-way slabs contains maximum 
displacements ranging from 21.1 mm to 1101 mm. Detailed parameter 
ranges for the supplementary numerical simulation data are listed in  
Table 6. Notably, in the numerical models, the explosives are placed 
above the center of the slab, a single-layer reinforcement is configured 
with equal spacing in both directions, and fixed constraints are adopted. 

During the manual processing of numerical simulation data, the 
failure modes of the RC slab are recorded systematically. Fig. 6 illus
trates a damage example of an RC one-way slab under varying explosive 
loading conditions. The dimensions of the slab are 850 mm × 750 mm ×
30 mm. Under the explosive loading of (5 kg, 3 m), (30 kg, 3 m), and 
(60 kg, 3 m), the slab exhibits bending failure (BF), bending-shear fail
ure (BSF), and shear failure (SF), respectively. Different failure modes 
exhibit varying damage characteristics. For instance, SF is characterized 
by direct shear failure at the support locations. 

2.3. Description of the dataset 

This study contains 572 data samples, including 77 data samples 
collected from the literature and 495 supplementary numerical simu
lation data samples. Among them, 316 data samples are for one-way 
slabs, and 256 data samples are for two-way slabs. Table 7 presents 
the minimum, maximum, mean, and standard deviation values of these 
datasets. 

3. Maximum displacement prediction DL model 

In this section, an MLP model is developed to predict the maximum 
displacement of RC slabs exposed to explosive loads. The dataset con
sists of 418 samples, including 236 single-way slabs and 182 two-way 
slabs. Some samples that experience collapse failure are excluded from 
the training dataset because of the unavailability of maximum 
displacement measurements. 

3.1. Configuration of MLP model 

The performance of an MLP model relies on the configuration of its 
hyperparameters, such as the number of hidden layers and the corre
sponding number of neurons, learning rate, batch size, epochs, and 
activation function. Bayesian optimization exhibits superior efficiency 
in exploring hyperparameter space by utilizing prior information to 
guide the search direction [41]. Therefore, Bayesian optimization is 
used to determine the configuration of the MLP model. 

In addition to hyperparameter optimization, the k-fold cross- 
validation [42] is used to estimate the performance of the model and 
select appropriate hyperparameters. The dataset is divided into k sub
sets, and k iterations are performed. In each iteration, k-1 subsets are 
used for model training, and the remaining subset is utilized for vali
dation. Through iterative training and validation on different subsets, 
the k-fold cross-validation provides a comprehensive evaluation of the 
model’s generalization capabilities. In this section, a 10-fold 
cross-validation method is employed, ensuring that the determined 
hyperparameters exhibit remarkable predictive capability. 

The architecture of the MLP model comprises three hidden layers, 
each containing 20 neurons. The selected hyperparameters include a 
learning rate of 0.001, a batch size of 12, 1500 training epochs, and the 
utilization of the sigmoid activation function. The MLP model structure 
is shown in Fig. 7, where w represents the weight of the connection 
between two neurons, and b denotes the bias value. Variables x1 to x10 
correspond to the 10 input features listed in Table 6, while the output 
variable y represents the maximum displacement. 

Fig. 5. Displacement–time history of the slab center.  

Table 6 
Parameter ranges for supplementary numerical simulation data.  

Parameter Variable Symbol Unit Range 

Length x1 L m 3 ~ 5 
Width x2 W m 2 ~ 4 
Thickness x3 T m 0.05 ~ 0.2 
Concrete compressive strength x4 fc MPa 30 ~ 60 
Rebar yield strength x5 fy MPa 335 ~ 600 
Rebar diameter x6 D mm 6 ~ 12 
Rebar spacing x7 R mm 80 ~ 200 
Charge mass x8 M kg 5 ~ 300 
Blast distance x9 d m 1 ~ 3 
Type of slab x10 F / one-way, two- 

way  
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3.2. Model training and results discussion 

The datasets are trained using the MLP neural network configura
tion. The datasets are randomly split into three subsets, namely, a 
training set, a validation set, and a test set, comprising 293, 83, and 42 
samples, respectively. Z-score normalization is applied to standardize 

the data, ensuring consistent feature scales to optimize model training 
efficiency and enhance convergence [43]. 

Fig. 8 shows the variation trend of the mean squared error (MSE) 
during the training process. The gradual decrease in MSE indicates that 
the model progressively learns the features of the data and moves to
ward more accurate prediction outcomes. Upon the completion of 
training, the MSE of the training set is 0.00725. 

To assess the prediction performance of the model comprehensively, 
five widely utilized assessment metrics are employed on the training, 
validation, and test sets. These five metrics include the coefficient of 
determination (R2), explained variance score (EVS), root mean squared 
error (RMSE), mean absolute error (MAE), and scatter index (SI), defined 
by Eqs. (1) to (5), respectively. Among these metrics, higher values of R2 

and EVS signify greater prediction accuracy, whereas lower values of 
RMSE, MAE, and SI indicate superior prediction performance. 

R2 = 1 −

∑n
i=1(Pi − Ti)

2

∑n
i=1(Pi − T)2 , (1)  

EVS = 1 −
Var{Ti − Pi}

Var{Ti}
, (2)  

Fig. 6. Failure mode of RC slab (top view above, side view below).  

Table 7 
Minimum, maximum, mean, and standard deviation of the datasets.  

Parameter Minimum Maximum Mean Standard 
deviation 

Length 0.85 5 3.59 1.03 
Width 0.75 4 2.72 0.81 
Thickness 0.03 0.2 0.10 0.04 
Concrete compressive 

strength 
13.7 140 45.15 16.24 

Rebar yield strength 300 630 418.79 79.24 
Rebar diameter 5 12 9.38 2.48 
Rebar spacing 30 750 111.21 45.13 
Charge mass 0.13 1000 101.99 154.86 
Blast distance 0.3 41 2.33 2.82 
Maximum displacement 0.64 1146 243.68 251.34  

Fig. 7. Neural network structure of the MLP model.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Pi − Ti)
2

n

√

, (3)  

MAE =

∑n
i=1|Pi − Ti|

n
, (4)  

SI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1
(Ti − Pi)

2

√

T
, (5)  

where Pi and Ti signify the predicted and actual values, respectively; T 
denotes the mean value of the actual values; Var represents the variance; 
and n is the number of samples. 

Table 8 presents the performance of various evaluation metrics 
across different datasets. These metrics exhibit similar performance 
across the training, validation, and test sets. For instance, the R2 values 
for the training, validation, and test sets are 0.9929, 0.9886, and 0.9923, 
respectively, indicating robust model generalization. Notably, R2 and 
EVS values are close to 1, suggesting good prediction performance. In 
comparison with the random forest model developed by Almustafa & 
Nehdi [17] and Zhao et al. [19] for estimating the maximum displace
ment of RC slabs under explosive loads, the MLP model developed in this 
section exhibits better prediction performance, as proven by higher R2 

and EVS values, as well as a lower SI value. Larger RMSE and MAE in the 
MLP model are attributed to the higher average maximum displacement 
in the dataset. The average maximum displacement of the dataset in this 
study is 243.68 mm, which is significantly larger than those in the 
datasets used by Almustafa & Nehdi [17] and Zhao et al. [19], which are 
33.38 mm and 34.55 mm, respectively. 

Fig. 9 compares the predicted and actual displacements of the vali
dation and test sets. In the ideal scenario, data points align along the red 
diagonal line, indicating a perfect agreement between the predicted and 
actual values. The green and purple dashed lines represent the error 

margin of ± 20% and ± 40%, respectively. Most data points in the 
graph are located near the red line, showing that the predicted results 
are near the actual results. Further analysis is performed when the 
maximum displacement exceeds 50 mm considering the importance of 
larger displacements in assessing the maximum displacement of RC slabs 
under explosive loads. In the validation set, 57 samples with a maximum 
displacement exceed 50 mm. Among these, 48 data points fall within the 
± 20% error margin, whereas 55 data points within the ± 40% error 
margin, accounting for 84.2% and 96.5% of the total, respectively. 
Similarly, in the test set, 31 samples have maximum displacements 
greater than 50 mm, with 27 data points falling within the ± 20% error 
margin and 30 data points falling within the ± 40% error margin, ac
counting for 87.1% and 96.8% of the total, respectively. The analysis 
indicates the developed MLP model is effective in assessing the 
maximum displacement of RC slabs under explosive loads in most cases. 

3.3. Importance analysis of input features 

The complexity of neural networks makes them black boxes. The 
intricate nonlinear relationship between input and output variables is 
challenging to explicitly express through empirical formulas. To gain 
deeper insights into the feature learning process of the model and to 
reveal the effects of each variable on the predicted result, permutation 
feature importance (PFI) analysis is used as an important interpretative 
technique [44]. When a relationship exists between input features and 
the target variable, shuffling the order of data within the input features 
affects the prediction errors, with a more pronounced effect as the cor
relation strengthens. A larger PFI value indicates that the feature plays a 
crucial role in predictions, while a smaller value implies less influence 
on the predictive outcomes. 

Random permutations are applied to the 10 input features, and the 
PFI values are calculated based on RMSE for each input feature, as 
shown in Fig. 10. The highest PFI values are observed for charge mass M, 
blast distance d, slab types F, and slab thickness T, indicating that these 
four input features have the greatest influence on the output variable. In 
contrast, the concrete compressive strength fc, spacing of reinforcement 
R, and rebar yield strength fy have relatively minor effects on the pre
dictive outcome of the model. The calculated relative importance of 
input features in this study is similar to the findings of Zhao et al. [19]. In 
their study, the most influential factors on prediction outcomes were 
charge mass, blast distance, and slab thickness, whereas the minor ones 
were the concrete compressive strength and rebar yield strength. 

To verify the accuracy of the computed PFI results, a comprehensive 

Fig. 8. Variation trend of MSE.  

Table 8 
Performance of evaluation metrics on different datasets.  

Data set R2 EVS RMSE MAE SI 

Training set  0.9929  0.9935  22.14  16.84  0.08586 
Validation set  0.9886  0.9889  24.69  18.79  0.1157 
Test set  0.9923  0.9922  18.46  16.11  0.0868  

Fig. 9. Comparison between actual and predicted displacements.  
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parameter analysis is conducted utilizing collected literature data for 
charge mass M, blast distance d, slab thickness T, and concrete 
compressive strength fc. Tables 9 to 12 present the influence of these 
four input features on the maximum displacement of RC slabs exposed to 
explosive loads. Table 9 shows that the charge mass remarkably affects 
the maximum displacement, with larger changes resulting in greater 
displacement changes. The influence of the blast distance on the 
maximum displacement is listed in Table 10. Notably, a reduction of 
83% in the blast distance leads to a 1843% increase in maximum 
displacement. As indicated in Table 11, a reduction in the slab thickness 
is associated with diminished deformation resistance of the slab, 
resulting in an increase in its maximum displacement. In comparison 
with the three previously mentioned parameters, Table 12 shows that 
the influence of the concrete compressive strength on the maximum 
displacement is relatively small. The analysis suggests that the influence 
of the four aforementioned input features on the maximum displace
ment of RC slabs follows a sequence, that is, from stronger to weaker 
influence, consistent with the calculated PFI results. This affirms the 
reliability of the DL technique employed to estimate the maximum 
displacement of RC slabs under explosive loads. 

4. Failure mode prediction models 

A 1D-CNN model and five conventional ML models are developed to 
estimate the failure modes of RC slabs subjected to explosive loading. 
The training dataset consisted of 511 samples, with 270 single-way and 
225 two-way slab samples. The number of samples exhibiting BF, SF, 
and BSF is 190, 135, and 186, respectively. The collected numerical 
simulation data samples lack information on their failure modes, hence, 
they are excluded from this section. 

4.1. Configuration of models  

(1) 1D-CNN model. 

The classic CNN architecture was proposed by LeCun et al. [45] in 1989 
and has been widely applied in various fields. As a multi-level feedfor
ward DL algorithm, a typical CNN consists of two modules: the feature 
extraction part and the classification part. The feature extraction part 
typically consists of convolution-pooling-activation modules, filtering 
task-specific features from the input data, while the classification part is 
composed of fully connected layers, acting on the extracted features and 
assigning the probability for the input being a specific category. The 
1D-CNN model is utilized in this section. 

The setting of hyperparameters greatly influences the prediction 
performance of the 1D-CNN model. Thus, each hyperparameter value 
needs to be selected appropriately. In this section, the optimal hyper
parameters are obtained by employing Bayesian optimization and 10- 
fold cross validation. After multiple comparisons and analyses, the 
hyperparameters for the 1D-CNN are determined as follows: the number 
of filters is set to 60, the kernel size is 2, the dense units are 224, the 
dropout rate is 0.15, and the activation function is ReLU. The 1D-CNN 
architecture is shown in Fig. 11. During the training process, the 
dropout regularization method [46] is employed to prevent the model 
from overly relying on specific local features, thereby enhancing its 
generalization ability.  

(2) Traditional ML models. 

Five traditional ML classification algorithms, namely, the k-nearest 
neighbors (KNN) algorithm, the light gradient boosting machine 
(LGBM) algorithm, the RF algorithm, the support vector classification 
(SVC) algorithm, and the extreme gradient boosting (XGBoost) algo
rithm, are utilized for comparison. They are trained on the same dataset 
as the comparative study with the 1D-CNN classification algorithm. 
Bayesian optimization is employed to obtain the optimal hyper
parameters for each algorithm, followed by a 10-fold cross-validation to 
confirm their performance. The key hyperparameter settings for each 
algorithm are presented as follows:  

• For the KNN algorithm, the number of neighbors is set to 1. 

Fig. 10. Relative importance of input features.  

Table 9 
Influence of charge mass.  

Source Charge mass 
(kg) 

Change Maximum displacement 
(mm) 

Change 

Wang et al.  
[28]  

0.2 Base  10 Base  
0.31 55%  15 50%  
0.46 130%  35 250%  
0.55 175%  43 330%  

Table 10 
Influence of blast distance.  

Source Blast distance 
(m) 

Change Maximum displacement 
(mm) 

Change 

Syed et al.  
[7]  

6 Base  0.7 Base  
3.15 48%  2 186%  
1 83%  13.6 1843%  

Table 11 
Influence of slab thickness.  

Source Slab thickness 
(mm) 

Change Maximum displacement 
(mm) 

Change 

Du & Li  
[31]  

120 Base  6 Base  
110 8%  10 67%  
100 17%  12 100%  
90 25%  17 183%  

Table 12 
Influence of concrete compressive strength.  

Source compressive strength 
(MPa) 

Change Maximum 
displacement (mm) 

Change 

Du & Li  
[31]  

54 Base  8.5 Base  
44 19%  9.5 12%  
34 37%  10.5 24%  
24 56%  12 41%  
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• For the LGBM algorithm, the number of leaves is 250, the learning 
rate is 0.0590, the minimum number of data points in a leaf is 34, and 
the minimum sum of Hessian in a leaf is 0.006925.  

• For the RF algorithm, the number of estimators is 45, the maximum 
depth of each tree is 26, the minimum number of samples required to 
split an internal node is 3, and the minimum number of samples 
required to be at a leaf node is 3.  

• For the SVC algorithm, the regularization parameter is 732.03, and 
the kernel coefficient for the radial basis function is 0.0792.  

• For the XGBoost algorithm, the number of boosting rounds is 95, the 
maximum depth of a tree is 4, the learning rate is 0.2913, the min
imum loss reduction required to make a further partition is 0.8324, 
and the fraction of features to be randomly sampled for each tree is 
0.5103. 

4.2. Analysis of training results 

The prediction performance of the 1D-CNN model and five ML 
models is assessed using the 10-fold cross-validation technique. The 
dataset is split into 10 subsets, each of which is sequentially used as the 
validation set, whereas the rest are used for training the model [17]. This 
approach yields 10 distinct evaluations of model performance. The 
average of these 10 evaluation results serves as the performance metric, 
enabling a more reliable assessment of the model’s generalization ability 
and prediction performance. This method helps avoid any potential 
instability that may arise from inappropriate data partitioning in the 
evaluation results. 

Four assessment metrics, Accuracy, Precision, Recall, and F1-score, 
are used to assess the prediction performance of the model compre
hensively. Accuracy represents the proportion of correctly predicted 
samples, while Precision assesses the proportion of true positive samples 
among all samples predicted as positive. Recall measures the ability of 
the model to predict all positive samples, and the F1-score combines 
Precision and Recall through their harmonic mean to evaluate their 
performance comprehensively. The formulas for these evaluation met
rics are presented in Eqs. (6) to (9). 

Accuracy =
TP + TN

TP + FP + FN + TN
, (6)  

Precision =
TP

TP + FP
, (7)  

Recall =
TP

TP + FN
, (8)  

F1 − score =
2 × Precision × Recall

Precision + Recall
, (9)  

where TP and TN represent the number of samples correctly predicted as 
positive and negative classes, respectively; FP represents the number of 
samples incorrectly predicted as positive from the negative class, while 
FN represents the opposite scenario. 

Table 13 presents the prediction performance of different algorithms 
on four metrics for various failure modes of RC slabs. The 1D-CNN model 
demonstrates commendable performance in predicting failure modes, 
with a prediction accuracy of 90%. Specifically, the BF and SF modes 
display superior performance, each achieving an F1-score of 92%. The 
prediction accuracy for the BSF mode is slightly lower, with an F1-score 
of 86%. This discrepancy can be attributed to the complexity of the BSF 
mode, which poses challenges to accurate prediction. Among the five ML 
algorithms, the SVC algorithm exhibits the highest prediction accuracy, 
achieving an accuracy rate of 86%. Following closely are the LGBM and 
XGBoost algorithms, with accuracy rates of 84%. In contrast, the pre
diction accuracy of the KNN algorithm is less satisfactory at only 75%. 
Upon examining the prediction outcomes of each algorithm for different 
failure modes, BF and SF exhibit better prediction performance than 
BSF. This outcome demonstrates the intricate nature of BSF, posing 
challenges for accurate prediction. Comparing traditional ML classifi
cation algorithms with the 1D-CNN model, the latter exhibits superior 
prediction performance across different failure modes. 

Fig. 12 illustrates the application of the probability confusion matrix 
[47] in assessing the prediction performance of different failure modes 
of RC slabs. The values along the diagonal direction of the matrix 
indicate the probability of correct predictions for each specific category. 
With reference to the probability confusion matrix plot, a clear under
standing of the specific prediction outcomes for each type of failure 
mode can be obtained. For the 1D-CNN model, the prediction results are 
presented as follows: In the case of the BF mode, 178 samples (94%) of 
the predictions are accurate, with 12 samples (6%) misclassified as BSF 
and none as SF. For the BSF mode, 160 (86%) are correct predictions, 
with 18 samples (10%) incorrectly classified as BF and 8 samples (4%) 
incorrectly classified as SF. Regarding SF, 121 correct predictions (90%) 
are made, with 14 samples (10%) misclassified as BSF and none as BF. 

The prediction performance of each model is different. For the SVC 
algorithm, the accuracy rates for predicting BF and SF modes are 90% 
and 89%, respectively, with probabilities of misclassification into the 
BSF mode at 10% and 11%, respectively. In the BSF mode, the correct 
prediction probability is 81%, with probabilities of 11% and 8% for 
misclassifying as BF and SF modes, respectively. The overall prediction 
performance of the SVC algorithm is satisfactory. In contrast, the pre
diction performance of the KNN algorithm, particularly in predicting 
BSF and SF modes, is inadequate, with accuracy rates of only 66% and 
67%, respectively. The LGBM, RF, and XGBoost algorithms exhibit 

Fig. 11. Network structure of the 1D-CNN.  

Table 13 
Performance metrics of the 1D-CNN model and five ML models.  

Algorithm Failure mode Precision Recall F1-score Accuracy 

1D-CNN BF  0.91  0.94  0.92  0.90 
BSF  0.86  0.86  0.86 
SF  0.94  0.90  0.92 

KNN BF  0.73  0.91  0.81  0.75 
BSF  0.68  0.66  0.67 
SF  0.93  0.67  0.78 

LGBM BF  0.85  0.91  0.88  0.84 
BSF  0.80  0.74  0.77 
SF  0.86  0.86  0.86 

RF BF  0.85  0.87  0.86  0.81 
BSF  0.74  0.76  0.75 
SF  0.86  0.79  0.83 

SVC BF  0.90  0.90  0.90  0.86 
BSF  0.82  0.81  0.81 
SF  0.88  0.89  0.89 

XGBoost BF  0.86  0.89  0.88  0.84 
BSF  0.79  0.78  0.79 
SF  0.88  0.84  0.86  
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comparable prediction performance across different failure modes, and 
their prediction abilities are acceptable. A comparative analysis dem
onstrates that the developed 1D-CNN algorithm outperforms traditional 
ML algorithms in terms of prediction performance. Therefore, the 1D- 
CNN model is selected as the prediction model for the failure mode of 
RC slabs under explosions. 

4.3. PFI analysis of different algorithms 

A PFI analysis was used to examine the influence of each input 
variable on the failure mode. This method evaluates the influence of 
individual input features on failure modes by rearranging the values of 
each feature and quantifying the effects of this permutation on the 
prediction performance. Fig. 13 shows the relative importance of each 
input feature for different algorithms. The four most important features 
in the 1D-CNN algorithm include charge mass M, blast distance d, slab 
type F, and slab thickness T. In contrast, the least significant feature is 
concrete compressive strength fc. 

The relative importance of features varies between algorithms 
among traditional ML algorithms. The SVC algorithm, which achieves 
the highest prediction accuracy, exhibits a similar feature relative 
importance ranking to the 1D-CNN algorithm, suggesting that both al
gorithms can efficiently extract features from the input data for this task, 
leading to superior prediction performance. In contrast, the KNN algo
rithm, which performs the worst in terms of prediction accuracy, 
struggles to extract meaningful features from the input data, leading to 
challenges in accurately predicting the failure modes of RC slabs under 
explosions. With regard to the LGBM, RF, and XGBoost algorithms, they 
demonstrate comparable prediction performance, as suggested by their 
similar feature importance rankings. Overall, the prediction perfor
mance of the model is closely related to its ability to extract features 
from the data, and strong feature extraction capabilities improve pre
diction performance. The analysis above shows that when dealing with 
the dataset of failure modes for RC slabs under explosive loads, the 1D- 
CNN algorithm possesses superior feature extraction capabilities 
compared with other algorithms. 

5. Conclusions 

In this study, two DL-based models for predicting the structural re
sponses of RC slabs subjected to blast loads are developed. These models 
are trained and evaluated using collected literature data and supple
mented numerical simulation data. The following conclusions can be 
drawn:  

(1) The established MLP model demonstrates satisfactory predictive 
performance in assessing the maximum displacement of RC slabs 
under explosive loads. The prediction performance surpasses that 
of conventional ML models, with R2 values for the training, 
validation, and test sets being 0.9929, 0.9886, and 0.9923, 
respectively. Relative importance analysis reveals that the charge 
mass and blast distance have the most remarkable effect on the 
maximum displacement of RC slabs, whereas the effect of con
crete compressive strength is comparatively minor.  

(2) The developed 1D-CNN model demonstrates higher prediction 
accuracy in forecasting the failure modes of RC slabs under ex
plosions compared to five conventional ML classification models, 
achieving an improvement of 6–15%. The overall prediction ac
curacy of the 1D-CNN model is 90%, with accuracies of 94%, 
90%, and 86% in predicting BF, SF, and BSF modes, respectively. 
The results demonstrate that the 1D-CNN model efficiently pre
dicts the failure modes of RC slabs under explosive loads. 
Furthermore, the comparative PFI analysis indicates that the 1D- 
CNN model has superior feature extraction capabilities. Among 
the structural parameters, the type and thickness of the slab have 
a remarkable influence on the failure modes, whereas the 
compressive strength has a minor influence. 
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